Spatial Attention-in
DL Architectures

Mila Computer Vision Reading Group e

Oren Kraus - June 2022

—

Overview of existing approaches e

P y
1 Recursion

‘Mind the GAP (Global Average Pool)

Global Average Pooling is a pooling operation
designed to replace fully connected layers in
classical CNNs. The idea is to generate one
feature map for each corresponding category
of the classification task in the last mlpconv
layer.

Introduced by Lin et al. in Network In Network

[papers with code: global average pooling]

e e
’ -
l" «”
/ -
v g, -
7
C‘:’j o O O O

Discussion

Why GAP?
What alternatives
are there?

Is our use case
different?

https://paperswithcode.com/paper/network-in-network
https://paperswithcode.com/method/global-average-pooling#:~:text=Global%20Average%20Pooling%20is%20a,in%20the%20last%20mlpconv%20layer.

T3ackground on GAP

e Replaced dense output layers in Network in Network (ICLR, 2014)

o Introduced GAP (section 3.2) to replace dense layers in output
m enforces “correspondences between feature maps and categories”
m “no parameter to optimize in the global average pooling thus overfitting is
avoided at this layer” - 0.39% improvement in Cifar10 error rate
m GAP layer directly connected to cost - Class activation maps can be
visualized
m Also adopted by GooglenNet (CVPR, 2015), VGGNet, Resnet

=
—_— — 5 \dense
13
LN
2

;i 13 dense Kensel

1000

128 Max

pocling 203t 048

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
AlexNet (2012)- w/ dense output layer of three mlpconv layers and one global average pooling layer.

https://arxiv.org/pdf/1312.4400.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

T3ackground on GAP

e Learning Deep Features for Discriminative Localization (CVPR, 2016)
o Introduced class activation maps (CAM) derived from GAP layers
o 371% top-5 test error weakly supervised object localization on ILSVRC benchmark
o Grad-Cam extends this work by replacing the weight from the final classification
layer with the GAP gradients to each feature map

= ZOR
<200
<200
<‘Zoﬂ
=

(1)
&

X
A
Any
Task-specific
Class Activation Mappmg Network ...
Class =
* Activation A
) ‘ m:,‘: n terrier) Ei Backprop till conv k

grad-CAM

http://cnnlocalization.csail.mit.edu/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1610.02391.pdf

Tside-note]

Most of these models were trained on and validated on Imagenet when developed.
However, “Real-world scenes are likely to contain multiple instances of some objects,
and nearby object instances are particularly difficult to delineate. The average object
category in ILSVRC has 1.61 target object instances on average per positive image, with
each instance having on average 0.47 neighbors (adjacent instances of the same object
Category) " (Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge, 2014)

Is this the best approach for image datasets with lots of instances?

ﬂamlngo cock : urledg ouse quail partridge |

N

s
Egyptiancat Persian cat Siamese cat tabby

ImagNet Cell microscopy and
histology data

T3ackground on Spatial Attention

e Learn to Pay Attention (ICLR, 2018)

o Use global feature vector (g, i.e. post GAP vector) as query vector

o Compute attention weights (a?®) for final conv feature maps based on compatibility
score (c’°) based on dot product between g and spatial features ([,.5)

o (g,°) are either concatenated or used for separate predictions that are aggregated

o Improvements on CIFAR-10/100, CUB-200-2011, SVHN

compatibility score: ¢ = (£,g), i€ {1---n}. w

attention weights: ai = Z?.XP(C(Z 7y € {1---n}.
2

3x3 Conv,64
3x3 Conv,128
3x3 Conv,256
3x3 Conv,512
3x3 Conv,512/2
3x3 Conv,512
3x3 Conv,512/2
3x3 Conv,512/2
3x3 Conv,512/2

Att. Weighted
Combination

Att. Weis ghted
Combinatio:

RS 5 |
|

FC-2, 10 1

; . s __ n 8 s
Welg hted features: 9a. = E i—1 a’i . ez Figure 2: Attention introduced at 3 distinct layers of VGG. Lowest level attention maps appear to
- focus on the surroundings (i.e., the rocky mountain), intermediate level maps on object parts (i.e.,

harness and climbing equipment) and the highest level maps on the central object.

https://arxiv.org/abs/1804.02391

T3ackground on Spatial Attention

e Spatially Attentive Output Layer for Image Classification (CVPR, 2020)
o Compute spatial attention map final conv layer
o Output is sum of spatial logits (class specific predictions) weighted by attention map
o Introduce two additional losses - distillation based on GAP and SSL based on cutmix

PR Attention map
S || £2]: |QOO000
© i W,
s _ Ce— _ _ * Spatial Attention Map spatial b O c A. 6 [0) 1] o o ZZ,J A’LJ = 1, Vk
- : weighied X : SL ’ - '
‘ L4 B L% A % IR Ol seif-Disiltation SDatia| IOQitS
B @2 if Output
= | E Lssi, £ - - -
k"SpauulLugns e Y - [0]_]KXH"XWO Z (Y) =1 V’L]
o y k klij = s yJ-
g LSD‘
o OUtQUt

Output

Figure 2: The detailed structure of the proposed SAOL. It produces the spatial attention map and spatial logits, separately.
Note that we use additional self-annotated spatial labels to leverage our architecture further. We can also train the conventional

GAP-FC based output layer jointly, using self-distillation. S’k = OSAOL. k (XL) = E A’L 7 (Yk) 179 Vk?
%,J

https://arxiv.org/abs/2004.07570

‘Main paper

e Auagmenting Convolutional networks with attention-based
aggregation(arxiv, Dec 2021)

Replace final pooling layer with attention based pooling

Can support multiple class attention maps by using multiple class tokens
Propose CNN arch (PatchConvNet) to retain spatial resolution in conv
Outperforms other transformer-based archs, but not some convnets

(@)
(@)
(@)
(@)

/

Conv 3x3 stride 2
+ GELU
1
Conv 3x3 stride 2
+ GELU
Conv 3x3 stride 2
+GELU
Conv 3x3 stride 2
+GELU
Conv 3x3 stride

. x N depth parameter
16x16 pixels patches (196 for 224x224)
AN J N . 3 8 J

-

convolutional stem column / trunk attention-based pooling

Figure 3. Detail of the full model, with the convolutional stem on the left, the convolutional main block in the middle, and here toppled with multi-class
attention-based pooling on the right.

https://arxiv.org/abs/2112.13692
https://arxiv.org/abs/2112.13692

ViT comparison

e VIT - AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR
IMAGE RECOGNITION AT SCALE (ICLR 2021)

Vision Transformer (ViT) Transformer Encoder

L x e

Class

Bifﬁ MLP
Bal
Ca Head

Transformer Encoder

| 1
- BOEDODOOH D

* Extra learnable]

Multi-Head
Attention

[class] embedding Linear Projection of Flattened Patches

SEE N
o o —— 58 O O
ey Embedded

Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

‘Main paper

e Replace patching and flattening pixels with simple convolutional stem
that produces 16x16 patches

/

— d embedding dimension
\ "
\
N ~N ~N o~
. é = E = g = é =
. - woJlleodlle ..l|— w .J
e @l e @l o @l
e BoNZor3orgo
z z z -
S S S G
o (& (&) o
" o
e
= —" 16x16 pixels patches (196 for 224x224)
N J
\/

convolutional stem

‘Main paper

e The trunk consists of N blocks that preserve embedding dimension
and resolution (similar to transformer blocks without self-attention
between tokens)

d embedding dimension

rmoosasemooeisosidesisessesesseieiesisiosiisieae, N e ViV,
T 5 $ Inan
118 : A/
— : E & : .’.‘
|2 g s

i patches (196 for 224x224; ______________ s
— \ g

column / trunk

‘Main paper

Attention-based pooling

O

A query class token attends to the projected patches and aggregates them as a
weighted summation. The weights depend on the similarity of projected patches with
a trainable vector (CLS) akin to a class token. The resulting d-dimensional vector is

subsequently added to the CLS vector and processed by a feed-forward network
(FFN).

attention-based pooling

‘Main paper: Results

Classification with Imagenet1k training.

Architecture nb params throughput FLOPs Peak Mem | Top-1 V2
(x106) (im/s) (x10%) (MB) Acc. Acc.
“Traditional” ConvNets
ResNet-50 [+, 60] 25.6 2587 4.1 2182 | 80.4 687
RegNetY-4GF [0,00] 20.6 1779 4.0 3041 | 815 707
RegNetY-8GF [10,50] 39.2 1158 8.0 3939 | 822 71.1
RegNetY-16GF [, ©] 83.6 714 16.0 5204 | 829 724
EfficientNet-B4 [7] 19.0 573 42 10006 | 829 723
EfficientNet-B5 [7] 30.0 268 9.9 11046 | 83.6 73.6
NFNet-FO [7] 715 950 12.4 4338 | 83.6 72.6
NFNet-F1 [7] 132.6 337 355 6628 | 84.7 744
Vision Transformers and derivatives
ViT: DeiT-S [07,00] 220 1891 4.6 987 | 80.6 694
VIiT: DeiT-B [7] 86.6 831 17.5 2078 | 81.8 715
Swin-T-224 [+ 1] 28.3 1109 45 3345 | 813 69.5
Swin-S-224 [41] 49.6 718 8.7 3470 | 83.0 71.8
Swin-B-224 [41] 87.8 532 154 4695 | 83.5 -
Vision MLP
Mixer-L/16 [*©] 208.2 322 44.6 2614 | 71.8 562
Mixer-B/16 [©7] 59.9 993 12.6 1448 | 764 632
ResMLP-S24 [©7] 30.0 1681 6.0 844 | 794 679
ResMLP-B24 [7] 116.0 1120 23.0 930 | 81.0 69.0
Patch-based ConvNets
ResMLP-S12 conv3x3 [©7] 16.7 3217 32 763 | 77.0 65.5
ConvMixer-768/32 [] 211 271 209 2644 | 80.2 -
ConvMixer-1536/20 [] 51.6 157 514 5312 | 814 =
Ours-S60 2552 1125 4.0 1321 | 821 710
Ours-S120 477 580) 1450 | 832 725
Ours-B60 99.4 541 15.8 2790 | 835 72.6
Ours-B120 188.6 280 29.9 3314 | 84.1 739

...... ‘ EfﬁcientN et

Imagenet-val top1 acc. (%)

80 ViT: DeiT —e— ViT: DeiT
19 ViT: CaiT —=— e ViT: CaiT —=— |
78 |- Swin —— | S Swin —— |
Ours —— Ours ——
77 | 1 |] | |
1 4 10 40 100 1GB 3GB 5GB 7GB 10GB
GFLOPs Peak memory (MB)

Figure 7. Trade-offs for ImageNet-1k top 1 accuracy vs. FLOPs require-
ment and peak memory requirements (for a batch of 256 images). Patch-
based architectures are comparatively inferior w.r.t. the accuracy-FLOP
trade-off than hierarchical ones, but offer better operating points in terms
of the accuracy-memory compromise at inference time.

‘Main paper: Results

Table 3. ADE20k semantic segmentation performance using UperNet
[5“] (in comparable settings). All models are pre-trained on ImageNetlk

except models with T symbol that are pre-trained on ImageNet21k.

Backbone TpesDet

#params FLOPs Single scale Multi-scale

(x10%) (x10%) mloU mloU
ResNet50 [24] 66.5 - 42.0 _
DeiT-S [¢] 52.0 1099 - 44.0
XciT-T12/16 [19] 34.2 874 415 -
XciT-S12/16 [19] 54.2 966 459 R
Swin-T [+ 1] 59.9 945 445 46.1
Ours-S60 57.1 952 46.0 46.9
XciT-M24/16 [19] 112.2 1213 47.6 _
XciT-M24/8 [19] 110.0 2161 48.4 -
Swin-B [41] 121.0 1188 48.1 49.7
Ours-B60 140.6 1258 48.1 48.6
Ours-B120 229.8 1550 49.4 50.3
Swin-Bf (640 x 640) 121.0 1841 50.0 51.6
CSWin-Bf [17] 109.2 1941 51.8 52.6
Ours-S601 57.1 952 48.4 493
Ours-B60T 140.6 1258 50.5 51.1
Ours-B120t 229.8 1550 51.9 52.8
Ours-L1201 383.7 2086 522 52.9

Table 4. COCO object detection and instance segmentation perfor-
mance on the mini-val set. All backbones are pre-trained on ImageNet1k,
use Mask R-CNN model [~ '] and are trained with the same 3 X schedule.

Backbone

#params GFLOPS‘ AP’ AP,

APY, | AP™

m

m

50 75
ResNet50 [74] 44.2M 180 | 41.0 61.7 449 | 37.1 584 40.1
ResNet101 [74] 632M 260 | 42.8 63.2 47.1 | 385 60.1 413
ResNeXt101-64 [/7] 101.9M 424 | 4.4 649 48.8 | 397 619 42.6
PVT-Small [57] 44.1M - 43.0 65.3 469 | 399 625 42.8
PVT-Medium [5°] 63.9M - 442 66.0 48.2 | 40.5 63.1 435
XCiT-S12/16 444M 295 | 453 67.0 495 | 40.8 64.0 43.8
XCiT-S24/16 [1 V] 658M 385 | 465 68.0 509 | 41.8 652 45.0
ViL-Small [7¢] 450M 218 | 434 649 470 | 39.6 62.1 424
ViL-Medium [/"] 60.IM 294 | 44.6 66.3 485 | 40.7 63.8 43.7
ViL-Base [/7] 76.1IM 365 | 45.7 67.2 499 | 413 644 445
Swin-T [41] 478M 267 | 46.0 68.1 503 | 41.6 65.1 449
Ours-S60 449M 264 | 464 67.8 50.8 | 41.3 64.8 442
Ours-S120 67.4M 339 | 47.0 69.0 514 | 419 65.6 44.7

‘Main paper: Results

Table 5. Ablation of our model: we modify each time a single architectural
characteristic in our PatchConvNet model S60, and measure how it affects
the classification performance on ImageNetlk. Batch-normalization im-
proves the performance a bit. The convolutional stem is key for best per-
formance, and the class-attention brings a slight improvement in addition
to enabling attention-based visualisation properties.

J Modification to the architecture Top-1 acc.
none 82.1

class-attention — average pooling 81.9
conv-stem — linear projection 80.0
layer-normalization — batch-normalization 82.4
single-head attention — multi-head attention 81.9
asingle class-token — one class-token per class 81.1

Original VIT-S “ResNet-50" S60

Figure 1. We augment convolutional neural networks with a learned
attention-based aggregation layer. We visualize the attention maps for clas-
sification for diverse models. We first extract attention maps from a reg-
ular ViT-S [1%, 5¢] with Dino-style [*] vizualizations. Then we consider
convnets in which we replace the average pooling by our learned attention-
based aggregation layer. Unlike ViT, this layer directly provides the contri-
bution of the patches in the weighted pooling. This is shown for a “ResNet-
50 [24]”, and with our new simple patch-based model (PatchConvNet-S60)
that we introduce to increase the attention map resolution. We can special-
ize this attention per class, as shown with S60+.

